Question 3.1: Matrix diagonalization

Counsider a 2 x 2 Hermitian matrix:

with a and b real.

1. Show that the eigenvalues are

TeM £ /(TrM)? — ddet M
5 .
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2. Prove that
(TrM)? > 4 det M.

This is needed in order to ensure that the eigenvalues are real.

3. Assume that c is real. In this case, the matrix M can be diagonalized by an orthogonal

cosf sin6
O = ] }
(—sm@ cos@)

We call 6 the mixing angle. Show that

matrix O:

2c
b—a

vo(cl)

In general, it can be diagonalized by a bi-unitary transformation. That is

tan 20 =

4. Consider a general matrix

Mgiag = Vi MV}

In order to find V;, and Vg, first show that MMT and MTM are Hermitian and that they
are diagonalized by Vp and Vjg, respectively. Then use the above formalism to find the

diagonalization angles in the case where M is real.



Question 3.2: Non-Abelian gauge bosons

In this question you are asked to prove that the gauge bosons belong to the adjoint represen-

tation. Consider a field ¢ that transforms as an M-dimensional representation, R:
p—Up, U=l

where @ runs from one to the dimension of the group (for SU(N), a = 1,2,...,N*> — 1) and U
and T are M x M matrices. We take 0, to be independent of z,. This may seem weird, as the
whole reason to introduce the gauge fields is to let 6, depend on z,. Yet, once the gauge fields
are introduced, they must transform also under the global symmetry, so 6, = const(z,) is just a

special case. The covariant derivative is
D, =0, +19G,, G EGZTG.
1. Show that the infinitesimal transformation is

U=1+iT,0,+0(6?).

2. Write the infinitesimal transformation of ¢, explicitly with the group indices.

3. In order to promote a global symmetry to a local one, D, ¢ must transform the same way as

, that is,
g Eq.(1)
D,¢ = UD,¢.

Show that Eq.(1) implies that

1
G, — UG, U - gTaaﬂea. Eq.(2)

4. Show that Eq. (2), together with the algebra of the group, imply that for an infinitesimal

gauge transformation
1
a a c pabc b a
G — G, +0°Ff Gu—gﬁﬁ :



Question 3.3: A mirror world

Consider the following model:

(4)

(i)

(idd)

The symmetry is a local U(1)gm % U(1)p. We denote the corresponding gauge bosons by A,
and C,, and their field strengths by F),, and C,,,, respectively.

There are four Weyl fermion fields:
eL(—l,O), BR(—I,O), dL(O,—l), dR(O,—l), (329)

where the first number in the parenthesis is the charge under U(1)gm and the second is the

charge under U(1)p.

There are no scalars.

. Write down the covariant derivative D,, for a generic field with charge (gga, gp), and then

write it specifically for the four fermion fields. Use a normalization such that the coupling

constants of the two groups is the same, that is, gem = gp = e.

. Draw the Feynman diagrams for this theory, i.e. draw all vertices from the interaction terms

in the Lagrangian and write down their corresponding rules. Be sure to label the fields and

take care of particle flow.

. Find £, and state what are the masses of the fermions and how many DoF each has.

Consider the term C,, F*. (A term of this form is called “kinetic mixing” term.) Argue

that this term is gauge invariant, Lorentz invariant, and has mass dimension d = 4.

Despite the fact that the kinetic mixing term is allowed we do not write it since we use canonical

normalization. (It is a similar argument for why we do not write a term of the form ey, D u.)

Thus, we can write £L = Lgy + Lp and the two sectors are completely decoupled. In particular,

the process e2 — dd is not allowed as it connects the two sectors.

3.

We now add a scalar field S(—1,+1) to the theory. Write down explicitly the covariant

derivative D,S.

. Write down the most general coupling of S to the fermions (up to dimension-four terms).

Write down the hermitian conjugate terms explicitly.

. Explain why the theory violates parity. What are the consequences of imposing parity?



The model that we considered in this question is representative of a class of models where, in
addition to a sector with the particles and interactions known to us, one adds a sector that is
either completely decoupled from the first sector, or coupled to it only via very heavy degrees of
freedom. The (almost) decoupled sector is often called a “dark sector.” Thus, C,, would be called
a “dark photon”, and its interactions can be termed as “dark QED.” We return to this model in

Question 3.4.



Question 3.4: More on the dark photon

We consider a model that is an extension of the one discussed in Question 3.3:

(i) The symmetry is a local U(1)gpm x U(1)p. We denote the gauge bosons by A, and C,,,

respectively.

(77) There are four fermion fields:
GL(—l,O), €R(—1,0), dL(O,—]_>, dR(O,—]_)

(#7) There is a single complex scalar:

Qb(CIEM, QD)-

We assume no kinetic mixing and use a normalization such that the coupling constants of the two

groups is the same, that is, ggm = gp = e.

1. There are five specific charge assignments that allow Yukawa interactions, that is, couplings

between ¢ and the fermions. What are these charge assignments?

From this point on, we do not consider any of the above options, that is, we consider only cases

where all Yukawa interactions are forbidden.

2. Write the scalar potential. What is the condition for ¢ to acquire a VEV? From here on,

assume that this condition is satisfied.

3. One way to make the model possibly consistent with Nature is to have partial SSB, such that

the photon A, is massless but the dark photon C),is massive. Explain why this is the case when
gem=0 and ¢p# 0.

4. In the above case, that is with ggyy = 0 and ¢p # 0, write the mass of the dark photon
in terms of the model parameters.

5. We now consider a case where both ¢ggy # 0 and gp# 0. In this case both U(1)gyand U(1)p
are broken. Show, however, that the breaking pattern is [U(1)]* — U(1). We denote the

massless gauge boson Aj, and the massive one C7..





