
Question 3.1: Matrix diagonalization

Consider a 2× 2 Hermitian matrix:

M =

(
a c

c∗ b

)
,

with a and b real.

1. Show that the eigenvalues are

λ1,2 =
TrM ±

√
(TrM)2 − 4 detM

2
.

2. Prove that

(TrM)2 ≥ 4 detM.

This is needed in order to ensure that the eigenvalues are real.

3. Assume that c is real. In this case, the matrix M can be diagonalized by an orthogonal

O =
cos θ sin θ

− sin θ cos θ

matrix O: ( )
.

We call θ the mixing angle. Show that

tan 2θ =
2c

b− a
.

4. Consider a general matrix

M =

(
a b

)
.

c d

In general, it can be diagonalized by a bi-unitary transformation. That is

Mdiag = VLMVR
† .

In order to find VL and VR, first show that MM † and M †M are Hermitian and that they

are diagonalized by VL and VR, respectively. Then use the above formalism to find the

diagonalization angles in the case where M is real.



Question 3.2: Non-Abelian gauge bosons

In this question you are asked to prove that the gauge bosons belong to the adjoint represen-
tation. Consider a field φ that transforms as an M -dimensional representation, R:

φ→ Uφ, U = eiTaθa ,

where a runs from one to the dimension of the group (for SU(N), a = 1, 2, . . . , N2 − 1) and U

and T a are M ×M matrices. We take θa to be independent of xμ. This may seem weird, as the

whole reason to introduce the gauge fields is to let θa depend on xμ. Yet, once the gauge fields

are introduced, they must transform also under the global symmetry, so θa = const(xμ) is just a

special case. The covariant derivative is

Dμ = ∂μ + igGμ, Gμ ≡ Ga
μTa.

1. Show that the infinitesimal transformation is

U = 1 + iTaθa +O(θ2a).

2. Write the infinitesimal transformation of φk explicitly with the group indices.

3. In order to promote a global symmetry to a local one, Dμφ must transform the same way as

φ, that is,

Dμφ→ UDμφ.

Show that Eq.(1) implies that

Gμ → UGμU
† − 1

g
Ta∂μθa.

4. Show that Eq. (2), together with the algebra of the group, imply that for an infinitesimal 
gauge transformation

Ga
μ → Ga

μ + θcfabcGb
μ −

1

g
∂μθ

a.

Eq.(1)

Eq.(2)



Question 3.3: A mirror world 

Consider the following model: 

(i) The symmetry is a local U(l)EM x U(l)n. We denote the corresponding gauge bosons by Aµ 

and Cµ, and their field strengths by Fµ11 and Cµ11 , respectively.

( ii) There are four Weyl fermion fields:

(3.29) 

where the first number in the parenthesis is the charge under U(l)EM and the second is the 

charge under U ( 1) D. 

( iii) There are no scalars.

1. Write down the covariant derivative D µ for a generic field with charge ( qEM, qD), and then

write it specifically for the four fermion fields. Use a normalization such that the coupling

constants of the two groups is the same, that is, 9EM = 9D = e.

2. Draw the Feynman diagrams for this theory, i.e. draw all vertices from the interaction terms

in the Lagrangian and write down their corresponding rules. Be sure to label the fields and

take care of particle flow.

3. Find L'I/J and state what are the masses of the fermions and how many DoF each has.

4. Consider the term C µ11Fµ11
• ( A term of this form is called "kinetic mixing" term.) Argue

that this term is gauge invariant, Lorentz invariant, and has mass dimension d = 4.

Despite the fact that the kinetic mixing term is allowed we do not write it since we use canonical 

normalization. (It is a similar argument for why we do not write a term of the form e1uDµ µ.) 

Thus, we can write L = LEM+ Lo and the two sectors are completely decoupled. In particular, 

the process ee -+ dd is not allowed as it connects the two sectors. 

5. We now add a scalar field S(-1,+1) to the theory. Write down explicitly the covariant

derivative D µS.

6. Write down the most general coupling of S to the fermions (up to dimension-four terms).

Write down the hermitian conjugate terms explicitly.

7. Explain why the theory violates parity. What are the consequences of imposing parity?



The model that we considered in this question is representative of a class of models where, in 

addition to a sector with the particles and interactions known to us, one adds a sector that is 

either completely decoupled from the first sector, or coupled to it only via very heavy degrees of 

freedom. The (almost) decoupled sector is often called a "dark sector." Thus, C
µ 

would be called 

a "dark photon", and its interactions can be termed as "dark QED." We return to this model in 

Question 3.4.



Question 3.4: More on the dark photon

We consider a model that is an extension of the one discussed in Question 3.3:

(i) The symmetry is a local U(1)EM × U(1)D. We denote the gauge bosons by Aμ and Cμ,

respectively.

(ii) There are four fermion fields:

eL(−1, 0), eR(−1, 0), dL(0,−1), dR(0,−1).

(iii) There is a single complex scalar:

φ(qEM, qD).

We assume no kinetic mixing and use a normalization such that the coupling constants of the two

groups is the same, that is, gEM = gD = e.

1. There are five specific charge assignments that allow Yukawa interactions, that is, couplings

between φ and the fermions. What are these charge assignments?

From this point on, we do not consider any of the above options, that is, we consider only cases

where all Yukawa interactions are forbidden.

2. Write the scalar potential. What is the condition for φ to acquire a VEV? From here on,
assume that this condition is satisfied.

3. One way to make the model possibly consistent with Nature is to have partial SSB, such that

the photon Aμ is massless but the dark photon Cμ is massive. Explain why this is the case when
qEM = 0  and  qD 
= 0.

4. In the above case, that is with qEM = 0  and  qD 
= 0, write the mass of the dark photon
in terms of the model parameters.

5. We now consider a case where both qEM 
= 0 and qD 
= 0. In this case both U(1)EM and U(1)D 

are broken. Show, however, that the breaking pattern is [U(1)]2 → U(1). We denote the
massless gauge boson A′μ and the massive one C ′μ.




